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Abstract—A fully nonlinear, three-dimensional rod model is developed that incorporates transverse
shear and torsion-warping deformation. The geometric setting is that of a constrained body model
with contiguration space modeled on R* x S0(3) x R ; a differentiable manifold. The proposed model
incorporites the classical notion of bi-moment (and bi-shear) 10 a fully nonlinear, geometrically
exact context. Explicit, properly invariant, constitutive equations that generalize those of the
lincurized theory are developed. The underlying variational formulation of the model is discussed,
and computational procedures employing a Galerkin projection arc addressed. Numerical examples
are presented that illustrate the performance of the formulation.

L. INTRODUCTION

We consider a three-dimensional rod model based on a gecometrically-exact description of
the kinematics of deformation, In addition to finite shear deformation, the model accounts
for torsional warping of the cross-sections of the rod and the coupling torsion-bending -
warping, Conceptually, the present formulation extends carlier work of Dupuis (1969),
Reissner (1973, 1981), Antman (1974), Whitman and DcSilva (1974), Simo (1985) and
Simo and Vu-Quoc (1986¢) to include the warping distorsion of a cross-section in a way
that leads to eflicient computation. Dupuis (1969) focuses on the linearized stability analysis
about the initial configuration. Reissner (1973) generalizes his previous work on the plane
problem in Reissner (1972), and extends the classical three-dimensional rod model (cf.
Love, 1944) to accommodate the effect of shear deformation.t Analogous models, although
phrased in the context of a director theory, were proposed by Whitman and DeSilva (1974),
Antman (1974) and Antman and Jordan (1975) ; these formulations are essentially the two-
director Cosserat constrained theories in which the directors are rigid and constrained to
remain orthonormal. Subsequently, Parker (1979a.b) performed an asymptotic analysis
that provides a justitication of the classical rod model (without shear deformation) within
the context of the three-dimensional nonlinear theory. Our derivation of the relevant stress
resultants, conjugate strain measures, and equations of motion is based on a reduction of
the three-dimensional theory by means of a kinematic hypothesis, as in Antman (1976a.b)
and Simo (1985).

In recent years, considerable attention has been paid to the problem of coupled
bending-torsion -warping of bcams. Formulations restricted to the lincar theory and
accounting for the cffects of torsion-bending-warping have been proposed by Reissner
(1979a.b) : including the cffect of pretwist by Hodges (1980), Krenk (1983a,b) and Krenk
and Gunneskov (1985). Sccond-order theories accounting for torsion-bending-warping
and pretwist have been discussed in Reissner (1983a.b, 1984, 1985). However, as far as we
are aware of, the case of finite deformations that include all of the above effects has not
been considered heretofore.

+ For a historical account of the early development of rod models, see Ericksen and Truesdell (1958).
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In what follows, we delineate the basic features and novel aspects of the proposed
formulation :

{a) The proposed rod model is fully nonlineur, geometrically exact within the assumed
kinematics, and properly invariant under superposed rigid body motions {or isometries).
Moreover. complete inertia effects are accounted for in the formulation. The structure of
the rate of linear and angular momenta is identical to that arising in rigid body mechanics.
In particular. in the limit of an infinitely stiff rod. Euler’s equations governing the motion
of a ngid body are recovered.

(b} The equation of motion governing the warping of a cross-section is derived with
no approximation from the assumed kinematics and the three-dimensional equations of
motion. This equation is a complete balance law that relates the bi-moment to the bi-shear
and includes the appropriate inertia term.

{c) A class of simple reduced constitutive equations based on small strains is discussed.
These constitutive laws are properly invariant under superposed rigid body motions.
Coupling effects of torsion, bending and warping are accommodated in the model.

{d) Our carlier computational framework is readily extended to accommodate the
effect of warping. Computationally, it amounts simply to the introduction of an additional
degree of freedom: There are seven degrees of freedom instead of six.

From a practical standpoint. the proposed formulation and its computational
implementation covers a broad range of applications:

(f) 1t allows the numerical simulation of bifurcation and instability phenomena. An
extensive set of numerical examples is given in Simo and Vu-Quaoc (1986¢, 1988) and Vu-
Quoc (1986). The present development includes the effect of torsion-bending-warping
which is of particular tmportance in thin-walled beams with open cross-scction and
restrained warping.

(g) The dynamic nature of the theory and the exact satisfuction of ali the invariance
requirements under superposed isometries result in a convenient treatment of flexible beam
structures performing large overall motions. This recognition constitutes the basis for our
analysis of this class of problems, which encompusses applications as diverse as helicopter
blades or rotor blades, flexible robot arms (Simo and Vu-Quog, 1986u,b), three-dimensional
lurge overall motion of flexible beam structures (Simo and Vu-Quoc, 1986¢, 1988), multi-
component structures and closed-loop chains undergoing large overall motions, as well as
orbiting sateHites with flexible appendages and large motion of tlexible multibody systems
including closed-loop chains (Vu-Quoc and Simo, 1987). A comprchensive overview of this
work is given in Vu-Quoc (1986). In particular, we note that:

{g1) The cquations of motion can be referred directly to the inertial frame. Extensive
coupling in the inertia operator due to Coriolis, centrifugal and inertia due to
rotation of the floating frame is completely avoided. For planar motions, for
instance, the lincarity of the inertia operator with respect to the acceleration
simplifies considerably the numerical treatment.

{g2) Nonlinear geometric effects of special importance in transient dynamic analysis
of rotating structures are automatically accounted for in the present formulation.
It is numerically demonstrated in Kane et of. (1985), and analytically shown in
Simo and Vu-Quoc (1987), that the use of geometrically linear theories in such a
situation may lead to completely erroncous results.

2 KINEMATIC ASSUMPTION. CONFIGURATION SPACE
The following notation is employed throughout the present work.

2.1. Basic notation for rotations
Following standard usage, we denote by SO(3} the rotation group: that is the group
of orthogonal matrices A, satisfying AA” = { and det A = 1. We designate by | = 3¢, ®
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e, the identity matrix in SO(3). Further, we denote by so(3) the linear space of skew-
symmetric matrices; accordingly. (v)+(v)r =0, for all beso(3). Skew-symmetric matrices
beso(B) represent infinitesimal rotations with rotation axis (or axial vector) defined via the
standard relation

Oh=0xh foranyheR’, (1

where 8 R" is the axial vector of the skew-symmetric tensor 0.and x denotes the ordinary
vector product. In coordinates, relative to an orthonormal basis {e,.e..e;} of R, we writet
A=A ® e, 0= (v?,,e, ®e, and 0 = f.e,. where [A,] and [b,,} are orthogonal and skew-
symmetric matrices, respectively. In matrix notation we have

0 -8, 0. 0,
0= 0. 0o —o/|. (0}={0.}. (2)
-0, 0, 0 0,

Next, let A, be a time-dependent family of orthogonal matrices, with te{0, 7] denoting
time. Equivalently. A, can be viewed as a “curve”™ on the manifold SO(3) with parameter
t. To computc the tangent to this curve we observe that time differentiation of the ortho-
gonality relation A,A] = 1 implics that 0, :=[dA JdT|A] is skew-symmetric. Consequently,
the tangent ficld to the curve A, is of the form dA /dt:= (v),/\,. with 0 skew-symmetric.
Hence, given a rotation matrix A € SO(3). the sct

T, SO(3):= {OA| for any D e so(3)) 3)

is tangent to SO(3) at A, and is therefore called the tangent space. In particular, at the
identity 1€ SO(3). the tangent space T,SO(3) is the set of skew-symmetric matrices; i.c.
s0(3). Geometrically OAe T, SO(3) represents an infinitesimal rotation (defined by b) super-
posed on (or tangent to) the finite rotation A,

2.2, Kinematic description of the heam

We consider a beam which initially occupics a reference configuration denoted by
B = R’. For simplicity we shall assume that B corresponds to a straight beam with length
L. A convenient parametrization of B is obtained by introducing an orthogonal frame
{0 E, E,, E,} with coordinates denoted by {.X, X,, S} and such that the axis of the beam
is initially along E,. The cross-scctions of the beam lic therefore in planes parallel to the
coordinate plane {E,, E;} and occupy a region denoted by ) « R with (two-dimensional)
boundary denoted by ¢Q. Conscquently, B = Qx [0, L] and the position vector X of a
material point X' = (X, X, 8) in Bis given by

X = Y,E,+SE,, where (X,.X:)eQ. and Se[0,L]. 4)

t Summation convention on repeated indices is implied. Index in Roman letter takes values in the set {1,2, 3},
index in Greek letter takes values in the set {1, 2},
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Fig. 1. Geometric deseription of beam deformation. Definttion of material frame [E, ), spatial frame
te,r= 3K, and (moving) section frame ¢, |

Let the centroid of a cross-section be at coordinates (0,0, 5), and denote by A, J,, and J,
the area, products of inertia, and polar moment of inertia relative to the centroid. We havet

J' X, dQ =0, 4 s.cj dQd, Sy v“}(’f{“J\ Y, X dQ. J, ::[ [Yi+Xi|dQ. (5
i8] i3] {3} 2

We denote by {ey. ey ey an inertial fixed orthonormal basis in the ambient space R, such
that e, = o, E,. Although the basis vectors {E,} and {e,} arc chosen to be identical, it proves
useful for clarity to maintain the usual distinction between the material basis {1} and the
spatial basis e},

With this notation at hand, for the static problem, we specify the deformed con-
figurations of a beam in the three-dimensional ambient space R as follows :

(i) The line of centroids in the deformed contiguration, initially coincident with the
interval [0, L] along E,, occupices the position defined by a curve ¢,:[0, L] —» R,

(i) An uarbitrary cross-section of the beam. initially coincident with planes per-
pendicular to E; for values Sel0, L], is assumed to experience a finite rotation (and
twist) about a point S with position vector S = S,E, + SE;, and a superposed out-of-plane
warping, defined as follows :

(ii.1) Ignoring for the moment warping deformation, a finite rotation (and twist) of
the cross-sections is defined by specifying the orientation reltive to the basis
{E,} of an orthonormal basis {t,(S)},. 1., attached to the cross-sections and
initially coincident with {E;}. This is equivalent to prescribing a one-parameter
family of orthogonal transformations A : [0, L] — SO(3) that uniquely define the
orientation of the moving frame according to the relations

t,(5) = A(SIE, = A, (S)e,. (6)

Note that in the ahsence of warping, t:(S) is the unit vector normal to the plane
of the cross-section in the deformed configuration ; see Fig. 1. We also note the
I'Clilli(')ﬂ ‘\(S) = t,(S)@ E[ = A,/(S)C, ® E;‘

te, is the permutation symbol defined as ¢, = —¢,; = Land ¢;, = ¢, = 0. and §,, denotes the Kronecker
delta.
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(ii.2) Out-of-plane warping displacement of each cross-section is then defined by means
of an additional displacement along the unit vector t,(S) in the deformed
configuration which is assumed to be given by the product of two functions
f(X,.X>) and p(S). Here f: Q—+ R is a prescribed (giten a priori) warping
functions. and p: [0, L] — R is the (unknown) warping amplitude.t

Now let x = ¢(X, X, S) be the position vector of a material point in the deformed
configuration of the beam initially located at X = (X,. X,. S). According to the preceding
discussion. the function @(X,.X..S) is uniquely defined in terms of the functions
{9.(5). A(S), p(S)} by the expression

(X1, X1, §) = ¢,(S)+ X,6(5) +/ (X1, X2)p(S)t:(S). (M

Since a three-dimensional configuration ¢ is uniquely determined by prescribing the triplet
of functions ® = (¢,. A, p). defined on [0.L] and taking values on R'x SO(3) x R. one
refers to the set

Ci={® = (¢..A.p):[0.L] » R* x SO(3) x R} (8)

as the configuration space of the beam. The dynamic case is obtained merely by considering
a time-dependent family of configurations, denoted by @, = (¢,.. A, p.), which is now a
function of (S.ne[0. L] xR,.

This completes our kinematic description of the motion of the beam. The model
described above falls within the class of constrained Cosserat models in which the directors
are constrained to be the orthonormal basis vectors {t,} ; see e.g Toupin (1960) and Antman
(1972). Note that instead of using three Euler angles to parametrize the orientation of the
basis {t,} as in Love (1944), Whitman and DcSilva (1974) or Antman (1974), we represent
its orientation directly by the orthogonal two-tensor A (Dupuis, 1969 ; Simo, 1985) for
simplicity in the exposition of the formulation. However, the use of the orthogonal two-
tensor A implies a representation of 3-D finite rotations by ninc parameters together with
three orthonormality constraints (Simo and Vu-Quoc, 1986¢). An optimal representation
of the finite rotations of the beam cross-sections via quaternions that avoids the inherent
singularity of Euler angles, and at the same time requires only four parameters with one
orthonormality constraint, is proposed in Simo and Vu-Quoc (1986b). A possible choice
for the warping function f: Q@ — R is discussed below.

Remark 2.1. (Linearized kinematics.) Further insight into the nature of the fully
nonhnear kinematic assumption (7) is obtained by examining its linearized version. Set

¢, = SE;+euy+0(%), and t, = E,+e0x E, +0(:*). )

where O(e)/e = 0 as £ — 0. By retaining terms up to the order O(¢), the dynamic case (7)
becomes

(X, X0, 800 = uy (S, 1) +0(S, 1) x (LE) +/(X,, X2)p(S, E,, (10)
where u(.Y,.X1, S, 1) is the linearized displacement field, of a matcrial point X = (X,. X,, 5)
at time ¢, and u,(S. 1) is the displucement of the line of centroids. Expression (10) can be

written in the following alternative but equivalent form

1, (X, t) = 4,(S. t) — e,5[ X5 — Sp]0:(S. 1)
Uy (X, 1) = @;(S, 1) — ey Xp0,(S. ) +f(X,)p(S. 1), (an

merely by setting

+ We further generalize this description below by assuming that f is also a function of S€{0, L]. Such a
generality is necessary to account for the effect of pretwist.
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u(,,(S.I)=ﬁ,(5.1)+9x(5.t)e,ﬁ5ﬁ. H()](S.f)=l;_x(s. ’)- (12)

Here, a(S. ¢) is the displucement of the line of shear centers S [defined by (14) below]. Clearly.
(10) and (i1) are equivalent. However, in contrast with (11), (10) has a straight forward
extension to the nonlincar range given by (7).l

Remark 2.2. (Determination of the warping function.) The warping function f: Q - R
can be determined by considering the Saint-Venant uniform torsion problem for a prismatic
body B =Qx[0,L]. The displacement field u(.X,..X.. S) (Sokolnikoff. 1956, p. 113) is
obtained from (11) by setting i@, = i, = 0 and ¢, = 0. The equilibrium equations and the
traction-free boundary condition on the lateral surface ¢Q x [0, L] then result in the classical
Neumann problem

Af=0inQ, &fiévi=Vfv= —[(X,—S)E, xv]*E, on éQ. (13)

where Vf = f.E,. and v = ¢,E, denotes the unit vector normal to the boundary ¢Q. Since
[:aldfiév]dT = 0. standard results in elementary potential theory (cf. Kellogg. 1953)
guarantec the existence of a unique solution to problem (13) up to a constant, for prescribed
(5. S,). Thus, the shear center defined by the constants (S, S;) and the solution of (13)
are uniquely specified by appending the following three additional orthogonality conditions
on f(X,..Y,):

f SN X)dQ = f (X X dQ = f X2 (X, X2)dQ =0, (14)
\1] 143 L¥]

Conditions (14), , provide a definition of shicar center often eredited to Treftz; see e.g. Fung
(1969, Appendix 1) for an clementary discussion, and Reissner and Tsai (1974) for a different
approach. These conditions are also assumed in Viasov (1961, p. 40). Next, recall the
definitions

Jx::f (X =S +(X: =827 dQ = J, + A[ST + 53],
1

Ji=Jy+ey f [V, =S,/ dQ. Z:= J J7dQ, (15)
(3] ()

where J is the Saint-Venant torsion modulus (Sokolnikoll, 1956, p. 112), and = the warping
constant of Vlasov (1961, p. 39). We have the following identifies which play an important
role in Section S

J( /x dQ = ‘_L’x[!th f (./.; +./:2)dQ = -I,‘»"_J’v

! 3]

‘[’ L’:/I"‘/x_/:/l dQ =J-J,. '[ (‘:/:(X, -S.)f/l dQ = J-Js, (16)
2

We refer to the Appendix for the proof.l

Remark 2.4. Following Krenk (1983a.b), Krenk and Gunneskov (1985) and Reissner
(1985). the cffect of pretwisr may be accounted for by assuming a warping function now
depending on S€[0, L] of the form f(&(S). $:(S)). which satisfies the following differential
equation
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df (3:(5).$:(S) . s .
f—ld—s—s‘—* = 24(8)e5[5.(8) f5(51(9). ()] an
where 2,(S) gives the angle of pretwist. In what follows, we account for the effect of pretwist
by considering a general warping function f(X,, X,.S).Hl

2.3. Deformation gradient

We develop in this section a particularly convenient expression for the deformation
gradient F(X) = D¢, (X). the derivative of the deformation map ¢, in (7) with respect to
the spatial coordinates (.X',. X.. S). First. in agreement with (3). the spatial and time rates
of change of A(S.1) are given by

CA(S.D) _ CA(S.1)

ag——’ = w(S.DA(S.1). — o

= w(S. DA(S.1). (18)

where @(S. 1) € s0(3) and w(S. 1) € so(3) are skew-symmetric tensor fields with axial vectors
o(S. e R and w(S. N e R, respectively. In what follows. we will use the customary symbols
(*)’ to denote the differentiation ¢/8S, and () for ¢/dt. It now follows from (7) that

o] ]
‘w};’é =t,+/,pts. ;{g = ¢+ (X, =S x t,+ (fp)'ts +/pw x t,, (19)

where (+), denotes partial differentiation with respect to X, (a = 1.2). Sincc A =, ® E,,
with the aid of (19), we may express the deformation gradient as

Fi=¢, @K =A+pt, @V/+[(d. - t)+ox(d~¢.)+(/p)t,|@ K, (20)
Introducing the notation
Fi=Al(¢.-t))=A"¢p,—-FE,, Q:=A"w, (1)
we arrive at the following final expression for the deformation gr;uclignl
F=All+pE, @ Vf+{I'+Qx Al (¢ =)+ (/pVE,} ® E,]. (22)

where Q = Awis the axial vector of the skew-symmetric tensor £ := ATA’, with components
given in the material basis {E;}. Expression (22) plays an important role in the developments
that follow.

of centroids. To see this, suppose the line of centroids in the reference contiguration is a
smooth curve @, : [, h] = R, with length L. The arc length is then given by

S=S(:)==f'

a

!

”dé .

so that Se[0,L) for ela.b] and L = §(h). Thus, without loss of generality, we may
parameterize the reference line of centroids by its arc length S, so that ¢,(S) = @.(S " '(5)).
As for the reference frame {E,}, we may choose the Frenet frame and set

¢.'(S)

Ei:=¢.,(S). E = -"—~ E,;=E,xE,. 24
vi=@.(S) 1 167(S)] »=E,xE (24)

Expressions (20) and (21) remain valid with
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|
3. MECHANICAL POWER. REDUCED CONSTITUTIVE EQUATIONS

We first identify the appropriate stress resultants and stress couples and their conjugate
strain measures by deriving the expression for the internal power of the rod. This is
accomplished by reduction of the stress power of a 3-D continuum in a manner consistent
with the assumed kinematics.

3.1, Stress resultants and stress couples. Conjugate strains
Let P denote the first Piola-Kirchhoff stress tensor. Relative to the basis {E,} we have
the expression

P=T,®E,+T;®E;,. (25)

Since the base vector E, is normal to a typical cross-section in the reference (undeformed)
configuration, T, = PE, is the stress vector, per unit of reference area Q, acting on that
cross-section in the deformed configuration.

Recall that in terms of the first Piola -KirchhofT stress P, the stress power may be
expressed as

Pi= J P dQds (26)
2 < (0.1

where P: F:= tr[PF]. Qur objective is to derive an exact expression for P in terms of the
stress resultants and stress couples acting on a cross-section, To this end, we make use of
(22) along with (18), to obtain

F=wF+AM+QxAT(¢—9.)+/P'E|® B, +pAlE;, ® V/+/QxE;+/E, | ®F ;.
(27

In deriving expression (27), we have made use of the orthogonality conditions (14) along
with the result

o ) -
(A9 ,)] = o [X.E. +/pE,] = fPE,. (28)
't Jt

which follows at once from (6) and (7). Next, since W is a skew-symmetric tensor and
PF’}J = o is the (symmetric) Cauchy stress tensor, where J = det F, it follows that

P:wF =tr [PF'w'] = Jtr[ow'] = 0. (29)

Hence. by substituting (27) into expression (26) for the stress power P and making use of
(29). we arrive at the expression for the mechanical power for the rod model

P = j [N+ 1+ M- Q4 N+ M,'] S, (30)
0.L]

where the stress resultants N, M, N, and M, have the expressions:
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N:=ATn. with n==J;T3 dQ, (31a)
M:=ATm. with m:=L(¢—¢U)xT3 dQ. (31lb)
Aj,::t,-Lu,T, T, xw+fT;]dQ. (31c)
M= E;'[x\rLfT_x dQ]Et;'L[T; dQ. (31d)

Remark 3.1. The objects defined by expressions (31) above have a clear physical
interpretation.

() = ne = Nt and m = m,e, = M,t, are the stress resultant and the stress couple
acting on a cross-section in the deformed configuration. These two objects are spatial
vectors expressed either in the fixed spatial basis {e,}, or in the cross-section basis {t,}.

(b) N = A'n and M = A'm are material vectors obtained by transforming the spatial
vectors nand m back to the reference configuration (a pull-back operation using the
orthogonal transformation A: R — R*). Since E, = At,. we have the following coordinate
expressions, N = ¥ E; and M = M, E,. From the expression of the mechanical power P in
(30). it can be seen that the strain measures conjugate to N and M are I and €, respectively.
For more detail on the strain measures and their use in computation, we refer readers to
the tollowing references: Dupuis (1969), Reissner (1973), Whitman and DeSilva (1974)
(component form), Simo (1985) and Simo and Vu-Quoc (1986a) (geometric interpretation
and parametrization).

(€) ¥, and M, are the counterpart in the finite deformation case of the bi-shear and the
hi-moment in the lincar theory of thin-walled beams. In tuct, it is shown below that the
relation between N, and M, parallels that of the lincar theory. From (30), the bi-shear N, is
conjugate to the warping amplitude p; the bi-moment M, is conjugate to the spatial
derivative ot p’. |l

Remark 3.2, The mechanical power in (30) is expressed in the material description,
The counterpart of (30) in the spatial description takes the form

psf [n-y+m-&+N,p+ M, p’| dS, (32)
10,1}

. . » - v . - -
where @ is the spatial curvature vector detined in (18). Here, (*) is the objective rate
measured by an observer fixed in the moving frame {t,} and y is the following spatial vector

_ Chy

v 0
7= e The (')‘=(§;(')—W><(')- (33)

It can be seen from (32) that y is the strain measure conjugate to the spatial stress resultant
n. and @ the curvature vector conjugate to the spatial stress couple m. @

3.2. Constitutive equations. Hyperelasticity

Confining our attention to the elastic casc and the pure mechanical theory, we postulate
the existence of a stored energy function depending on the configuration and its first
derivative; ie. y = V(5. ¢,.A. .. A", p.p’). and proceed to enforce the invariance require-
ments under superposed rigid body motions. Let t — ¢* :=c()+Q(f)9. be a superposed
rigid motion where c(r) e R® and Q(f)e SO(3). It follows that
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o = QU +e(n. ¢.” =Qne,
AT = QU)A, A =QuA (34

whereas the fields I, €. p and p’ remain unchanged: thatis. T =T Q" =Q.p* = pand
p’~ = p’. Material frame indifference requires that

¥ =P5.Q,+¢.QN.QP.. QN p.p ) = P(S. ¢.. A, A p.p). (35)

for any c(neR'. and any Q(1)eSO(3). In particular: (i) by choosing Q() = 1 and
e{t) = —¢ (for fixed S€[0.L)) it follows that P cannot depend on ¢: (ii) by choosing
Q = A7 (for fixed Se[0. L]) it follows that A cannot be an argument in P, and that the
stored energy function takes the form

Y =WS.T.Qpp) (36)
Standard arguments then yield the hyperelastic constitutive equations :

3\{1 '.\p 3\*‘ "\P
N="D. M=" N,:%E. M=

s ‘ 37
(':l" (?Q ( )

op

A concrete example of a properly invariant strain energy function is a quadratic function
in the strain measures (7., p, p' |, obtained as a direct generalization from the lincar case

(sce Section 5).

4. MOMENTUM BALANCE LAWS, GOVERNING EQUATIONS

In this section we derive the reduced expressions for the balance laws governing the
evolution of the internal forces n, m, N, and M,. Our main result concerns the relation
connecting the bi-shear &, and the bi-moment M,

4.1. Balance luw for the bi-shear and bi-ntoment

By making use of the exact three dimensional balunce of lincar momentum cquation
we derive the exact relation connecting N, and M, Let B(X) denote the body force per unit
reference volume acting on the beam, ind p,(X) the density in the reference configuration.
Since Div P =T, ,, the local balance of lincar momentum is expressed as

T +p.B=p,9. (38)

We use this relation to transform expression (31c¢) for the bi-shear N, as follows. First, note
that

o 'j‘ J(:!'I‘x dQ = tj 'J‘ [(/"rx).z —j 'rx.z} dQ
i$] {1

= t\'[J STy, dL— l ST, dQJ. (39)
At} 1

where we recall that v = v E, is the normal unit vector to the lateral contour &0 of the
cross-section . We denote by M, the following scalar resultant

M= t, [J fT,v, dL+ .(fp,,ﬂ dn], (40)
4] 9]

which in fact represents the distributed applied bi-moment on the beam. Employing the
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local equilibrium relation (38) and the definition (40) in the expressioﬁ for the bi-shear in
(39). we obtain

t.* |‘ /::Tx dQ = "v-[,'+t_1"[lf[—ri.l—p0$.t3] daQ
= A’[/..{.. J‘ (ft; 'Tl)..\ dQ — 'L(ft;)'-T_x dQ— J;fpn:$'t} dQ
8]

=A7,+M;—(th,)-ffn dn—Lp.,fJi-t,dn (@1)
(1]

where we made use of the definition of the bi-moment M, in (31d). In view of (31c), eqn
(41) implies that

M/~ N+ M, = J' oS Pt dQ. (42)
193

The right-hand side of the balance eqn (42) may be further reduced by assuming that p,(S)
is independent of the transverse coordinates. Next, making use of (11) and the relation
t, = wx t,, there results

~2

J N, /'J)"t‘ dQ = p,,f FATE : Apt)dQ
3] k2 ot

= p,,J‘j'zt.'[/‘it|+2pth.+pv'vxt.+wx(th.)]dQ
143

= pElF—{w-t) = wli*}pl = pElF - lwx t,|pl.  (43)

It remains to establish the equations of balance of lincar and angular momenta in terms of
stress resultants.

4.2, Summary of the governing equations

Let I(S, 1) be the resultant linear momentum, and let h(S, 1) be the resultant angular
momentum relative to ¢@,(S, 1), By definition, we have

1:= J [)l,(ﬁ LlQ, h:= j /)u(¢—'¢a) X ¢ dQ (44)
0 1

It casily follows from (7) and orthogonality conditions (14) that I(S, ) = p,Ad.(S.1).
Similarly, a more elaborated calculation yields the following result for h(S. ) :

h(S.1) = p, (DHA(S, O[I(S)+p*(S. OZE(S)Pg JW(S. 1), (45)
where W= Afwis the material angular velocity of the cross-scection. J is the time-independent

incrtia dyadic of the wnwarped cross-section in the material description, and Py is the
orthogonal projection parallel to E,, which arc given by

J(8:= ‘[ X, X, dQO,1-E, ®E)) = J,E, ®E,+/E,QE,, Py :=[1-E,®E;]
1
(46)

Note that [J +p*EPg ] is the inertia dyadic in the material description, associated with the
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warped cross-section, which becomes time-dependent due to the presence of the warping
intensity p(S.1). Result (46) can be also expressed in the spatial description.t Time
differentiation of (46) then yields

h=p, AW+ W xJW+Z{p’[Pg W+ W x Pg W]+2ppPs W] (47

The complete system of equations governing the motion of the rod is summarized in Box
I below.

Box 1. Governing equations for the rod model. Local form

CA(S. 1) AA(S.t .
AT (5. 0A(S. 0, A (5. 0AS. 0,
éS at
= Ari,f: -E,. Q=A"w
()
i . \ ,
n=AYS TSP p) m=ATSL2p Y
T %]
VST p.p) ST p)
Ny = | M, = B Ot
cp p
fn .
agtn= p.Ad,.
am (¢, . .
as + as x adam o= h,
M, - )
g =N+ T, = pEl = el

Remark 4.1, The form of the equations of equilibrium (without the inertia terms)
involving n and m given in Box | are well-known (e.g. Green and Laws, 1966), and have
been used in rod models incorporating extensional and shear deformations, as in Reissner
(1973) or Antman (1974). These equations can be re-parametrized relative to the are length
in the deformed configuration

s = 5(8):= J; .1l dS,

as in Whitman and DeSilva (1974). The stretch is then ds/0S = ||@,|l. Further, if shear
deformation is neglected, t; = ¢./||¢. )l and the equilibrium equations in Box | now para-
meterized in terms of the current arc length s reduce to

on ‘m
SHR=0, ot xntm =0, (48)
g oy

where = /]|, ]| and = m/|¢,]] are the distributed applied force and couple per unit
deformed length. Equations (48) are in the form given in Ericksen and Truesdell (1958).1
By defining the material curvature vector K(s) such that

tSct (S, 0= A(S, DHSIAT(S, 1} and P, (5.1) = A(S, t)P:‘(S)A'(S.t). and recall that w = AW, so that
WS, 0 = [{S. 0+ p*(S. OZP, (S.1)}w(S.1). Note that in the spatial description. {(S.0) = J,{5,,1 —t, ® t,] and
P, (5.0 = [1 -1, @] arc now time-dependent.

+ See equations (22.1) and {22.2), p. 316, of Ericksen and Truesdell (1958).
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cA |
s

6.1AQ = AK, (49)

where K(5(8)) := [|9.(S)|R2(S), in terms of the material stress resultant N and stress couple
M. (48) become

AN . M .
%;+l\’xN+N=O. (—.—s—+KxM+E,xN+M=O. (50)
=

where N:= A7, M := A" The equilibrium equations (50) are (in component form) those
given in Love (1944) for a thin rod without shear and warping deformation.t i

Remark 4.2. The momentum eqns (42)-(43) involving the bi-moment and bi-shear are
exact and were derived above in the context of the fully nonlinear theory. Remarkably, the
static version of this equation is identical to that of the linear theory ; see e.g. Vlasov (1961).
Reissner (1983b. 1984) derived the static version of (42) in the context of a second-order
geometrically nonlinear theory. [l

Remark 4.3. For the dynamic case. Green and Laws (1966) considered the mass to be
distributed on the representative curve modeling the rod in their two-director theory ; hence
there is no inertia term in the equation for the resultant couple. i.e. rotatory inertia is
neglected. Whitman and DeSilva (1969) derived a complete set of equations of motion for
their Cosscrat curve that include the rotatory incertia. Antman and Liu (1979) also consider
both translational and rotatory inertia cffects in their study of traveling waves in hyperelastic
rods. A complete analysis of the underlying Hamiltonian structure is given in Simo et al.
(198%). W

5. A CLASS OF REDUCED ELASTIC CONSTITUTIVE EQUATIONS

We discuss below properly invariant constitutive equations in terms of stress resultants
and stress couples of the form (37). These constitutive relations are extensions of results
obtained in the infinitesimal theory to the finite deformation range. Although these relations
could be postulated at the outset, the final form can be motivated as follows.

5.1 Elementary motivation. Infinitesimal strains
Let H be a rank-two material tensor defined as H:= ATF—1. From (22), we have

H=pE,@V+[+QxA"(¢—¢.)+/P'E;]®E,. (51
We introduce the assumption of small strains, although arbitrarily large displacements and
rotations, by considering a small parameter ¢ > 0 and assuming that |H|} = O(g), where
O(e)/c tends to a constant as € — 0. Accordingly, we sct
F. = A[1 +c¢H] = E, = ¢HY + O(e?), (52)
where E,:= {F/F,—1] is the Lagrangian strain tensor, and H' = {{H+H"] denotes the
symmetric part of H. In addition, let ¢ be the Cauchy stress tensor. We assume that
lle | = O(e), so that the sccond Piola -Kirchhofl tensor S, becomes

S, =X+ 0(:?), wherc L= ATgA. (53)

In addition, because of (53) we have

t Equations (10) and (11) on pp. 387-388 of Love (1944).
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ATP, = (det F,)ATeF, " = eZ+0O(&). (54)

In what follows, we shall restrict our attention to the case of small strains by considering
first order O(e) constitutive relations. No restriction, however, is placed on the displacement
field @,(S. 1) or on the rotation field A(S. 1). Accordingly, we may postulate a linear isotropic
relation between S, and E, with the same structure as in the linear theory: i.e. the so-
called Saint-Venant,Kirchhoff material, see Gurtin (1981) or Marsden and Hughes (1983).
Because of relations (52) and (53). this is equivalent, within order O(&%), to postulating a
relation

Zzﬂ = [;.(s,ﬁ(spp)+26(sxp(sﬂ9]H§0. (55)
where £ = L,4E,® E;. H® = HSE, ® E4. 4 > 0 and G > 0 denotes the Lamé’s constants.
Although (55) are linearized relations, we emphasize that they are properly invariant

under superposed isometries. To proceed further, we note from (54) that, to first order,
AT, = Z,;E,. Furthermore, as in elementary derivations of the linear theory, assume that

2,; = ZGH,S‘. Z}) = EH%“. (56)

where G denotes the shear modulus and £ the Young's modulus. Finally, by observing
from {(51) that

2[[,\\ = ":, * [r+Q x (X,,E,, +j[)|‘:‘)+/)V/}. I{}‘ = l‘:‘ '[l‘+ﬂ X :V,F., +_[,7’E.\].
(57)

and sctting T, += "+ E,, we arrive at the following constitutive refations.

Stress resultant N. By making usc of the orthogonality relations (14), the condition
(2), and the identity (16),, from definition (31a) we obtain the relation

N = /\"j T,dQ = J IHE dO = [GAI‘,-&—Gp’[ S dﬂ] E,+ EATE,,
(¥} {2 H
= [GArx—G(',”S‘(p]E,‘f'E‘Ar]E_\. (58)
Stress couple M. Substitution of (57), conditions (14} and (5),, and definition {5}, into

definition (31b) of the materiul stress couples M relative to the centroid, results in the
following constitutive equation

I

M A'"j (6—.)x T, dQ = j (X,E, +pf E;) x [2GHS, By + EH3,E ] dQ
i8] i#3

EJ,”Q,[E,‘*'G[JQQJ +[)(’,,{J. X,_/:” dQ]E;, (59)
(2]

where J,, and J, are the components of the inertia dyadic J as defined in (46). Note that in
deriving (59) we have neglected nonlinear terms in p?. Use of the identity (16), finally yields

M = EJ,,QE, +G[p +Jo(Q; - p)]E;. (60)

Bi-shear Ny and bi-moment M. First note that the second term in the expression for
the bi-shear N, as given in (31c) is of the order O(¢*) and can be neglected consistently with
relation (54). Hence, making use of (14), (5) and identities {(16) we obtain
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Ny = h'LLT, dQ =E, 'J;f.zATT, d2=E, 'J;[,XI,E: aQ = ZGJ faH3, dQ
Q

= G[F,J;f, dQ+Q,e,,LX,f,, dQ+pJ;fi dQ].
= Gle,s S.Tg+ (I —~Jo)Q:3+ (Js—J)p]. (61)

Finally, definition (31d) for M, and (54) along with (56). (57) and (14) yield the classical
relation

M, = ELfH§] dQ = E=p’. (62)

The preceding constitutive relations can be written in matrix notation as

r 3 r— ~—— r ~

N, GA . . . . . -GS, . r,

N: G4 - : . . GS, R

N, EA . . . . . r,
g B Bhe ' BN

M, EJ,, - . . Q,

AL, GJ, GU-=J,) - Q,

N, SYAM. GUs—d) - I

M, EE| | 7P
. J b — \ /

We note that the matrix of material elastic maoduli is constant and symmetric ; hence, the
strain energy function (36) becomes a quadratic functional in the (material) strain variables
ir.Q.ppl.

Remark 5.1, In the case of uniform (Saint-Venant) torsion, one has p = Q,, and
constitutive eqn (59) reduces to the classical Saint-Venant solution M, = GJQ,.t &

Remark 5.2, 1t is well known that direct integration of the local stress-strain relations
based on assumed beam kinematics overestimates the shear stiffness, which is often corrected
by introducing the so-called shear coefficient. Several procedures have been proposed to
estimate this coefficient ; see e.g. Cowper (1966). Similarly, the Saint-Venant torsional
constant J defined in (16) is often used in licu of the polar moment of incrtia J, (which is
the constant that arises in elementary beam theory without warping but including torsional
cffects).

For thin-walled beams, Krenk and Gunneskov (1985) propose the use of a symmetric
tensor of generalized shear-corrected areas A,, as a means of improving the shear stresses
distribution. In the present context this procedure can be readily implemented by assuming
an appropriate stored energy function. For instance, according to Krenk and Gunneskov
(1985),

Vo= GA, LT+ EAT + EJ,,Q,Q,4+ GIQIG(J, —0) Qs —p)* + EE(p')’]. (64)

where [, are modified shear strains. If we set [, =T, —e,zS;pp. for a = 1,2, use of the
general expressions (37) yields constitutive equations with essentially the same structure as

(63). 1.

t Note that Whitman and DeSilva (1974) used this type of constitutive equation but with GJ, for torsional
stiffness instead of GJ [see eqn (4.3) of this reference).
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6. VARIATIONAL FORMULATION. LINEARIZATION

In this section we construct the weak form (virtual work expression) of the local field
equations summarized in Box 1, and discuss the variational structure underlying this model.
Subsequently, we address the linearization of the weak form and derive the local form of
the linearized equations. These linearized equations play a crucial role in an iterative
solution procedure of the Newton type (method of tangents) performed on function spaces,
in linearized stability and bifurcation analyses (¢.g. Dupuis. 1969 ; Antman and Kenney,
1981), and in the study of the small deformations superimposed on finite deformations
(Green et al., 1968).

6.1. Admissible variations. Weak form of the equilibrium equations
The equilibrium equations in Box . without the inertia force. can be rewritten in the
following compact form

B*®)r—T=0. in[0. L] (65)

where r is the vector of stress resultants, T is the applied resultant force, and r— B*r is a
configuration-dependent differential operator defined as

n
-n il
m
B*()r:=9 -m—¢, xn . = N L b={m (66)
’ r W
—-M+N, ), s ) e M),

To define the virtual work expression associated with (65) we introduce the space of
kinematically admissible vartations in the standard manner as follows.

Admissible variations. Assume for simplicity pure displacement boundary conditions,
and let

Vis{gi=(u,0,¢):[0. L] = R*'xR* xR |n|,.,,. = (0,0,0)}, (67)

Given a configuration ® = (@, A, p)e C, any clement g = (u, 0, ¢) € V uniquely defines curve
of configurations t — B! e C, which starts at ®e C and is given by

B! = (¢ +1u, exp [t0]A, p+1q)e €, with ®!],_y = D. (68)

Here, exp [t(v)] € SO(3) denotes the orthogonal matrix obtained by exponentiating the skew-
symmetric matrix 70. By definition, d[®7/dt], . o is called a variation of ® € C in the direction
ne V. By differentiating (6.4) with respect to z it follows that the tangent space of variations
at ® = (¢,. A, p), which is denoted by T,C, is given by

ToCr={(u.0A.4) | (0.0.q)e V}. (69)

Clearly, these are a one-to-one correspondence between T, C and V. With a slight abusc of
notation, in what follows, an clement of Vis often referred to simply as a variation.

By multiplying (65) by a variation ne V" and integrating by parts, we obtain the
following virtual work expression ; a function G: C x V' — R given by

I3

B(O)y-rdS— J

0

I

G(®. )= j p-TdS =0, forallye ¥, (70)

0

where B(®) is the differential operator defined as
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u+¢,x0

P
n=(uw.g)eV —B®n:= . an

q 8x 1

The vector of resultants r is a function of the configuration through the elastic relations
(37). We introduce the notation

r
A .
Q M
E(®):= - Re= C M=y (72)
p Ny ; .
P J s« M/ Bxt 3x378x8

50 that constitutive eqns (37) and the corresponding elasticity tensors then take the following
compact from

AV (S.E)
R=—7% - =Mk
32\
_TVEB e (73)
JE*

The quadratic constitutive relation considered in Section S corresponds to the case C =
Const.

Remark 6.1, The constitutive eqns (73) could be phrased in weak form as follows. Let
X(S.R):= —='¥(S. E)+ R E be the Legendre transformation of ‘W(S, E). Define

(A -
H(®D,R; 5R) := I SR~ [ - ‘37“%5'{‘»,63 + E((D)] ds. (74)
0

Then H(®, R;5R) = 0 for arbitrary R is the Hellinger-Reissner weak form of the consti-
tutive equations. This form plays a central role in recent finite element formulations of the
incompressible problem (Franca and Hughes, 1988) und plates and shells (Simo and Fox,
1989 ; Simo et ul., 1989). A

6.2. Lincarization. Potential operators. Newton's method

First, we record the expression for the linearization of the strain measures E(®) at a
configuration ® in the direction a variation €€ V, which is denoted by DE(®)-&. Given
Ee V', consider the curve of configurations ®; defined as in (67). Using the chain rule, by
the directional derivative formula one has the result (Simo and Vu-Quoc, 1986¢),

DE(®d)- &= (% 0 E®) = NB(®)E, foranyZeV, (75)

=

where B(®D) is defined by (71). The lincarization of the weak form G(®, ) at configuration
® e Cin the dircction of a variation & = (@i, 0, §) € V is a bilinear form on ¥, which is denoted
by DG(®d,n)+ &, and is given by

d :
DG(®.n)& =+ \ G(®:, ), (76)

tm

where, as in (67), [dd}/dt]l,0 = (ﬁ.é/\,zi). Making use of (75) and the chain rule, (76)
results in the following expression
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L

L
DG(®.g)-¢ = j B(D)y - cB(P)E dS+ J Ln-blEdS. (77)
0 (]

Here, ¢ is the spatial elasticity tensor defined in (73). b is the so-called initial stress matrix,
which in the present model is a (9 x 9) matrix. and L is a matrix differential operator with
the following expressions

v

O;.; O;.; —n
v

u
b:= 0_\,_1 03,(3 —m . r]E(u.o.q)—NL']: 0. (78)
n 0. M®¢,— (¢, m1]dovo 0

Remark 6.2. Formally, if enough smoothness is assumed. the weak formulation as
given by (70) implies the local form (65) of the equilibrium equations. This is a standard
result in the calculus of variation which is obtained through integration by parts; see e.g.
Mikhlin (1970). Similarly, the local form of the linearized equilibrium equations is formally
obtained from (77) by integration by parts. In fact, from (77) there follows

L
DG(®.)-§ = j’ - {BHD)[cB(®)S]+ L*bLS]} dS 79

where L* is the adjoint operator of L. In matrix notation, onc has the expressions

d d

(_l‘S'I‘ O\!J O.‘x] —dS|‘ ()‘»(¥ (),‘i\

L= d . L= d . (80)
O,.» dSl‘ 0;. 0. _dSI‘ 1,
0. L Oy Jwer 0, 0,0 O]

The operator within brackets in (79) is referred to as the local tangent operator at con-
figuration e C. We use the notation

K(®) = B*(d)[cB(d)] + L*[bL]. (81)
n
Remark 6.3, The second term in (77), or the term L*[(bL] in (81), is referred to as the
geometric part of the tangent operator. Since b is generally non-symmetrie, sce (78), it
follows from (77) that DG(®,n)*& # DG(®, &) y. Equivalently, for arbitrary ®eC, the
tangent operator K(®) defined by (81) is generally non-sclf-adjoint. However, as shown in
Simo and Yu-Quoc (1986¢c), symmetry of the lincarized weak form or, equivalently, self-
adjointness of the local tangent operator, is recovered at an equilibrium configuration,
provided the loading is conservative. Away from cquilibrium, a proper definition of the
Hessian also leads to a symmetric tangent operator (see Simo, 1990). B
Remark 6.4. The lincarized problem plays a central role in the iterative solution of
nonlincar boundary value problems. The basic tool here is Kantorovich's extension of
Newton’s mcthod to nonlinear operators defined in Banach spaces of functions, e.g.
Vainberg (1964). In a numecrical analysis context, the procedure is often referred to as the
incremental method. We refer to Bernadou er al. (1984) for a recent mathematical analysis
of the method within the framework of nonlinear elasticity. The formulation and application
of the method to three-dimensional geometrically exact rod models is considered in detail
in Simo and Vu-Quoc (1986¢) in the context of the static problem, and in Simo and Vu-
Quoc (1988) in the context of the dynamic problem. The results in this section enable onc
to extend this methodology to the situation in which torsion-warping is taken into account
with essentially no modification. Hence, further details are omitted. Ml
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Fig. 2. Right angle frame. Problem description.
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Fig. 3. Right angle frame. Perspective view of first revolution of snap-through motion.
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Fig. 4. Right angle frame. Applied moment versus lateral displacetnent of apex.
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Fig. 5. Right angle frame. Magnified portion of the applied moment versus apex lateral displacement
diagram. Comparison of formulations with warping (solid line) and without warping (dotted line).

6.3. Numerical example

As an illustration of the formulation presented in this paper and the vanational setting
outlined above we consider the following numerical simulation obtained through a Galerkin
projection of the weak form (77). We use a finite element discretization in terms of bi-
quadratic isoparametric finite elements with two-point uniformly reduced numerical inte-
gration, and refer to Simo and Vu-Quoc (1986b.c) for a detailed account of the numerical
procedure.

We consider a right angle frame as shown in Fig. 2, whose deformation is symmetric
with respect to the plane v-z. The apex of the frame is constrained to remain in the plane
vz at all time. The hinged ends can only slide on the x-axis, and rotate about the z-axis.
Duc to this symmetry, only half of the frame is modeled. The value of Young's modulus is
= 71240, and the value of the shear modulus is G = 27191, The cross-section has the
following geometric properties: J,, = 1350, J,, = 0.54. 3 = 2.16 and E = 40.5. A moment
with increasing magnitude is applied at the hinged end of the frame. To trigger the out-of-
plance bifurcation, a very small perturbation load is also applied at the apex. When the
amplitude of the applicd moment reaches its critical value, the frame buckles out-of-
plane. At this moment, we remove the perturbation load, and employ a combination of
displacement-control and arc-length method to trace the post-buckling response. The frame
undergoes revolutions about the x-axis as we keep upplying the end moments ; two revolu-
tions are performed in the present analysis. A perspective view of the first revolution is
shown in Fig. 3, where the deformed shapes are given with no magnification, i.e. at the
same scale as that of the geometry of the structure. A plot of the magnitude of the applied
moment versus the lateral displacement of the apex is given in Fig. 4. [t is fairly obvious
that for this type of cross-scction, the effect of warping is insignilicant as compared with
the formulation without warping in Simo and Vu-Quoc (1986¢): Fig. 5 shows a zoomed-

1000

1

730~

300+

250~

o]
-2%+ - ~

- \\
-SOOL— (” \5

Applied moment

T

-750

~1000 1 L ! 1 L L )
-200 -150 <100 -50 0 30 100 130 200

Lateral displacerment of apex

Fig. 6. Right angle frame. Applied moment versus lateral displacement of apex. Solution (in solid
line) for warping inertiz constant Z:= {000. The solution without warping is shown by the dotted
line.
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in portion of Fig. 4 with the result without warping in dotted line. Further, we note that
the results remain essentially the same when warping at the hinged ends is constrained to
zero or not. In Figure 6, the effect of warping is clearly demonstrated for a cross-section
with a warping moment of inertia = = 1000, but possessing the same other properties as
the previous cross-section (the dotted line is the same plot as in Fig. 4 reproduced for
comparison).

7. CLOSURE

We have presented a model of a finitely deformable beam accommodating shear and
warping distortions of the cross-section. The geometry of deformations is described exactly
through configurations that take values in R* x SO(3) x R a nonlinear differentiable mani-
fold. The development of our model is based on basic concepts from three-dimensional
elasticity : the mechanical power of the beam is exactly reduced from the stress power of
the three-dimensional continuum, and provides an identification of the resultant forces and
their conjugate strain measures. The model incorporates Vlasov's notions of bi-moment
and bi-shear in a fully nonlinear geometrically exact context. In particular, the additional
balance law for the bi-moment is exact (within the kinematic hypothesis) and not restricted
to the usual case of second-order theories. Properly invariant reduced constitutive relations
are motivated and developed within the framework of hyperelasticity. The variational
formulation of the model is also discussed, including the lincarization of the weak form
and the structure of the local tangent operator, and ts illustrated by means of a numerical
cxample.
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APPENDIX. PROOF OF IDENTITIES (l6)

First. since 4f = fi4p = 0, we have

Lo =0uln = Xonfa =X Suls (Al)



Nonlinear geometrically-exact beam with shear and warping 393

Use of Green's formula. boundary condition (13).. and orthogonality conditions (14) yiclds

L/j, do = —e,,,J‘ XX, =S, dl = —¢,, L(,n-s,)dn = ¢, AS, (A2)
A% J

which proves (15),. Next, since e,,0,5 = 0. use of Green's formula and boundary condition (13), yields

€.y J:- (X,=S)/fydQ = '[I [V, —5:)f],dQ = - ‘[ﬂff.u"u dr. (A3)

Using again Green's formula along with the fact that f,, = 0 and definition (15). of the torsion modulus. from
(A3) there follows

LU,]:dQ= ~e,,1 (X, —=5.)/,dQ = Js - (Ad)
]

[dentities (16), , easily follow from (A2). (A4) and definition (15), of the torsion modulus. B



