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'\bstract-A fully nonlinear. three-dimensional rod model is developed that incorporates transverse
shear and lorsilln-warping deformation. The geometric setting is that of a constrained bl1dy model
with conliguration space modeled onlR) x Sao) x ~: a differentiable manifold. The proposed model
incorporales the classical notion of hi-moment (and hi-,rhelJr) in a fully nonlinear. geomelrim/~~'

('.\'(/cl conte~t. E~plicil. properly invariant. constitutive equations that generalize those of the
linea riled thel1ry 'Ire developed. The underlying variational formul:ttion of the model is diseussed.
and Clll11putalional procedures employing a Galerkin projection are addressed. Numerical examples
are presented that illustrate the performance of the formulation.

I. INTRODUCTION

We consider a three-dimensional rod model based on a geometrically-exact description of
the kinematics of deformation. In addition to finite shear deformation. the model accounts
for torsional warping of the cross-sections of the rod and the coupling torsion ·bending­
warping. Conceptually. the present formulation extends earlier work of Dupuis (1969).
Reissner (1973. \981). Antman (\974). Whitman and DeSilva (1974). Simo (1985) and
Sill10 and Vu-Quoc (1986c) to inelude the warping distorsion of a cross-section in a way
that leads 10 ellieient computation. Dupuis (1969) focuses on the linearized stability analysis
about the initial configur:ltion. Reissner (1973) generalizes his previous work on the plane
problem in Reissncr (1972). and extends the classical three-dimensional rod model (d.
Love. 1944) to accommodate the effect ofshear deformation. t Analogous models. although
phrast:d in the context of a director theory, were proposed by Whitman and DeSilva (1974),
Antman (1974) and Antman and Jordan (1975); these formulations are essentially the two­
director Cosserat constrained theories in which the directors are rigid and constrained to
remain orthonormal. Subsequently. Parker (1979a.b) performed an asymptotic analysis
that provides a justification of the classical rod model (without shear deformation) within
the context of tht: three-dimensional nonlinear theory. Our derivation of the relevant stress
resultants. conjugate strain measures. and equations of motion is based on a reduction of
the three-dimensional theory by means of a kinematic hypothesis. as in Antman (1976a.b)
and Simo (1985).

In recent years. considerable attention has been paid to the problem of coupled
bending-torsion -warping of beams. Formulations restricted to the lin('ar th(,ory and
accounting for the effects of torsion-bending-warping have been proposed by Reissner
(1979a.b); including the effect of pretwist hy Hodges (1980). Krenk (1983a,b) and Krenk
and Gunneskov (1985). Second-order theories accounting for torsion-bending-w.trping
and pretwist have been discussed in Reissner (l983a.b. 1984. 1985). However. as far as we
arc aware of. the case of finite deformations that include all of the above effects has not
been considered heretofore.

t For a historical account of the early development of rod models. see Ericksen and Truesdell (1958).
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(n what follows. we delineate the basic features and novel aspects of the proposed
formulation:

(a) The proposed rod model is fully nonlinear. geometrically exact within the assumed
kinematics. and properly invariant under superposed rigid body motions (or isometrics).
Moreover. complete inertia effects are accounted for in the formulation. The structure of
the rate of linear and angular momenta is identical to that arising in rigid body mechanics.
In particular. in the limit of an infinitely stiff rod. Euler's equations governing the motion
of a rigid body are recovered.

(b) The equation of motion governing the warping of a cross-section is derived with
no approximation from the assumed kinematics and the three-dimensional equations of
motion. This equation is a complete balance law that relates the bi-moment to the bi-shear
and includes the appropriate inertia term.

(c) A class of simple reduced constitutive equations based on small strains is discussed.
These constitutive laws are properly invariant under superposed rigid body motions.
Coupling etfects of torsion. bending and warping are accommodated in the model.

(d) Our earlier computational framework is readily extended to accommodate the
effect of warping. Computationully. it amounts simply to the introduction of an additional
degree of freedom: There are seven degrees of freedom inste"d of six.

From a practical standpoint. the proposed formulation and its computational
implement'ltion covers a broad range of applications:

(f) It allows the numerical simulation of bifurcation and instability phenomena. An
extensive set of numerical examples is given in Simo and Yu-Quoc (1986c. 1988) nnd Yu­
Quoc (1986). The present development includes the ctfect of torsion -bending-warping
which is of particular importance in thin-w'llIeu beams with open cross-section and
restrained warping.

(g) The dynamic nature of the theory .1Ild the exact satisiliction of all the invarianee
requirements under superposed isometrics result in a convenient treatment of llexible beam
structures perl~)fming large overall motions. This recognition constitutes the basis for OlLr
analysis of this dass of problems. which encompusses applil:utions as diverse as helicopter
bl<ldes or rotor blades. tlexiblc robot urms (Simo and Yu-Quoc. 1996a.b), three-dimensional
large over.tll motion of llexible bcum structures (Simo und Vu-Quoe. 1996c. 1988), multi­
component structures and closed-loop chains undergoing large overall motions, as well us
orbiting satellites with llexible appendages and large motion of llexible multibody systems
including closed-loop chains (Yu-Quoe and Simo, 19K7). A comprehensive overview of this
work is given in Yu-Quoc (1986). In particular, we note that:

(gl) The equations of motion can be referred directly to the inertial frame. Extensive
coupling in the inertia operator due to Coriolis. centrifugul und incrtiu due to
rotation of the lloating frame is completely avoided. For planar motions, for
instance. the linearity of the inertia operator with respect to the acceleration
simplifies considerably the numericul treatment.

(g2) Nonlinear geometric effects of speci.d importam.:e in transient dynamic analysis
of rotating structures are automatically accounk'd for in the present formul'11ion.
It is numerically demonstrated in Kane £'1 al. (19K5). and analytically shown in
Simo and Yu-Quoe (1987), that the usc of geometrically linear theories in such a
situation may lead to completely erroneous results.

2. KINEMATIC ASSUMPTION. CONFIGURATION SPACE

The following notation is employed throughollt the present work.

2.1. Ba.fic notation for rotations
Following standard usage. we denote by SO(3} the rotation group; that is the group

of orthogonal matrices A. satisfying AA T = I and det A = I. We designate by I = aile; ®
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e
J

the identity matrix in SO(3). Further. we denote by so(3) the linear space of skew­

symmetric matrices; accordingly. 9+9r = O. for all gesu(3). Skew-symmetric matrices

geso(3) represent infinitesimal rotations with rotation axis (or axial vector) defined via the
standard relation

(I)

where (Je IR~ is the axial rector of the skew-symmetric tensor 0. and x denotes the ordinary
vector product. In coordinates. relative to an orthonormal basis (e I_ e~. e~} of 1R~. we writet

A = Aile, ® e,. 0= OIJel ® eJ and (J = O,e,. where [/\J and [0,,] are orthogonal and skew­
symmetric matrices. respectively. In matrix notation we have

(2)

Next. let At be a time-dcpendent family of orthogonal matriccs. with r e [0. n dcnoting
time. Equivalently. At can be viewed as a "curvc" on the manifold SO(3) with parameter
r. To compute the tangent to this curvc we ohservc that time differcntiation of the ortho­

gonality rehltion ArA; = I implies that 0, t= [dA,/drIA[' is skew-symmetric. Consequently.

the tangent licld to the curve At is of the form dA,jdr.= O,A,. with 0 skew-symmetric.
lienee. given a rotation matrix A e SO(3). the set

7\SO(3):= {OAI for any Oe.w(3)], (3)

is tangl'nt to SO(3) at A. and is therefore called the tangent space. In particular. at the
identity IE SO(3). the tangent space T.SO(3) is the set of skew-symmetric matriccs; i.e.

so(3). Geometrically OA E T\SO(3) represents an infinitesimal rotation (defined by 0) super­
posed on (or t.,"gent to) the finite rotation A.

2.2. Kinematic description of the he(//1/
We consider a beam which initially occupies a reference configuration denoted by

Be IR 1. For simplicity we shall assume that B corresponds to a straight heam with length
L. A convenient parametriz'ltion of B is obtained by introducing an orthogonal frame
{0; E I E~. E I} with coordinates denoted by {X I. X~. S l and such that the axis of the beam
is initially along E,. The cross-scctions of the beam lie therefore in planes parallel to the
coordinate plane {E I • E~l and occupy'l region denoted by n c IR~ with (two-dimensional)
boundary denoted by cO. Consequently. B =nx [0. L) and the position vector X of a
matcrial point X = (XI. X~. S) in B is given by

(4)

t Summation convention on repealed indices is implied, Index in Roman leller lakes values in the set: 1.:2. 3}.
index in Gn:ck leller takes values in the set [I. 2}.
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x, •

Fig. l. Gel'mclric de",:riptil'n l,f "cam lld"rrnatillll. Ddiniliun of material frame: Etl. spatial frame
:c,'= ,i,/E,:. and (nwvingl scctillO frame :t,:.

Let the centroid of ;\ l:ross-section he at l:Oordinates (0. O. S). and denote by A, JIll and Ju

the mea. products of inertia. and polar moment of inertia relative to the centroid. We havct

Lx, dn ::= O. A ,= Ldn. J.II ,::: ('.,,('/1.. LX" X,. dn. J u ,,::: L[Xi + xn dn. (5)

We denote by {e I. e~. e': an ill('rtia/fixed orthonormal basis in the ambient space R\ such
thatl', = I)d 1':/ Although the basis vectors: E/: and: c,} arc chosen to be identical. it proves
useflll for clarity to maintain the usual distinction between the materi.Il basis: E,l and the
spatial basis (e,l.

With this notation at hand. for the static problem. we specify the deformed con­
figurations of a beam in the three-dimensional ambient sp.\ce IR I as follows:

(i) The line of centroids in the deformed configuration. initially coincident with the
intcrvallO. L) along E \. occupks the position detined by a curve tP" :[0. L} -+ R I

.

(ii) An arhitrary cross-section of the beam, initially coincident with planes per­
pendicular to E 3 for values Se[O. Lj. is assumed to experience a linitt: rotation (and
twist) about a point S with position vector S == S,E.+SE). and a superposed out-of-plane
1l'(Jrping. dcfincd as follows:

(ii.l) Ignoring for the moment warping deformation. a tinite rotation (and twist) of
the cross-sections is defined by specifying the oricntation relative to the basis
{Ell· of an orthonormal basis {tiCS>J{I-U.31 attached to the cross-sections and
initially coincident with {E,l. This is equivalent to prescribing a one-parameter
family of orthogonal transformations A: [0. L] -+ SO(3) that uniquely define the
orientation of the moving frame according to the relations

(6)

Note that in the ahsence of w'lrping. t)(S) is the unit vector normal to the plane
of the cross-section in the deformed conllguration; see Fig. I. We also note the
relation A(S) = t/(S) ® E/ = A,/(S)c, @ E/ .

t(',p is the pcrmul.ltion symhol detincd ,IS <'I: = -<':, = t .lOd ('" = (':: = O. <lnd ')jfdenotcs lhe Kronecker
delhI.
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(ii.:!) Out-of-plane warping displacement ofeach cross-section is then defined by means
of an additional displacement along the unit rector tJ(S) in the deformed
configuration which is assumed to be given by the product of two functions
f(X,. X:) and peS). Here f: n -+ iR is a prescribed (giren a prioTl) warping
functions. and p: [0. L] -+ !R is the (unknown) warping amplitude.t

Now let x = cf>(X I • X~. S) be the position vector of a material point in the deformed
configuration of the beam initially located at X = (XI' X~. S). According to the preceding
discussion. the function cf>(XI • X~. S) is uniquely defined in terms of the functions
{cf>,,(S). A(S).p(S)} by the expression

(7)

Since a three-dimensional configuration cf> is uniquely determined by prescribing the triplet
of functions <I> == (cf>". A.p). defined on [0. L] and taking values on iR J x SO(3) x!R. one
refers to the set

C:= {<I> == (cf>,•• A.p): [0. L] -+ IR J x SO(3) x IR} (8)

as the configuration space of the beam. The dynamic case is obtained merely by considering
a time-dependent family of configurations. denoted by <1>, .= (cf>,,,. ApI',). which is now a
function of (S./) E [0. Lj x IR ~.

This completes our kinematic description of the motion of the beam. The model
descrihed above falls within the class of constrained Cosserat models in which the directors
are constrained to be the orthonormal basis vectors {t /}; see e.g Toupin (1960) and Antman
(1972). Note that instead of using three Euler angles to parametrize the orientation of the
oasis:t/} as in Love (1944). Whitman and DeSilva (1974) or Antman (1974). we represent
its orientation directly by the orthogonal two-tensor A (Dupuis. 1969; Simo. 1985) for
simplicity in the exposition of the formulation. However. the use of the orthogonal two­
tensor A implies a representation of 3-D finite rotations by nine parameters together with
three orthonormality constraints (Simo and Vu-Quoc. 1986<:). An optimal representation
of the finite rotations of the beam cross-sections via Cjualernions that avoids the inherent
singularity of Euler angles. and at the same time requires only four parameters with one
orthonormality constraint. is proposed in Simo and Vu-Quoc (1986b). A possible choice
for the warping function f: n -+ IR is discussed below.

Remark 2.1. (Uneari:ed kinematics.) Further insight into the nature of the fully
nonlinear kinematic assumption (7) is obtained by examining its linearized version. Set

(9)

where O(f.~)/e -+ 0 as f. -+ O. By retaining terms up to the order O(e). the dynamic case (7)
becomes

where U(XI'X~, S. t) is the linearized displacement field. of a material point X = (XI. X~. S)
at time t. and U,,(S./) is the displacement of the linc of celltroicl~. Expression (10) can be
written in the following alternative but equivalent form

merely by setting

u,(X.t) = U,(S.1)-c.p[Xp-S"jOJ(S.I)

UJ(X./) = li.1(S./) - C,IIXljO,(S./) +f(X,)p(S. t). (II)

tWe further generalize this description below by assuming that/is also a function of Se(O.L). Such a
generality is necessary to account for the effect of pret ...ist.
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( 12)

Here. ii(5. t) is the displClcement ofthe lif/e afshear centers S [defined by ( 14) below]. Clearly.
(10) and (II) are equivalent. However. in contrast with (II). (10) has a straight forward
extension to the nonlinear range given by (7).•

Remark 2.2. (Detamination of the Hwping jimctiofl.) The warping functionf: n ..... IR
can be determined by considering the Saint-Venant uniform torsion problem for a prismatic
body B=Ox[O.L]. The displacement field u(X 1.X;.5) (Sokolnikoff. 1956. p. 113) is
obtained from (II) by setting ii, = ii, = 0 and 0, = O. The equilibrium equations and the
traction-free boundary condition on the lateral surface ('n x [0. L] then result in the classical
Neumann problem

tJ.f = 0 in n. cji'h':= Vf' \. = -[(.\",-5,)E, x \.]. E J on en. ( 13)

where V/=f,E,. and v = I"E, denotes the unit vector normal to the boundary ('n. Since
f.,o[iY/('\') dr = O. standard results in elementary potential theory (cf. Kellogg. 1953)
guarantee the existence of a unique solution to problem (13) up to a n)f/stcmt. for prescribed
(51' 5~). Thus. the shcllr ce1lter defined by the constants (5" 5~) and the solution of (13)
arc lI11iqllC~1' specified by appending the following tJm'e additional ortho.qoflillity conditions
onf(X"X~):

Conditions (14) 1. I provide a definition of shear (,(,fit", often credited to Treftz; sec e.g. Fung
(1969, Appendix I) for an elementary discussion. <tnd Reissner and Tsai (1974) for a dil1crent
approach. These conditions arc also assumed in Vlasov (1961. p. 40). Next. recall the
definitions

.n:= Js +C,/I { [X, - 5,1/'1 dn. =::= { f1 dn.
~I ~I

(15)

where.n is the Saint- Venant torsion modulus (Sokolnikofr. 1956. p. 112). and =: the warping
constant of Vlasov (1961, p. )9). We have the following identifies which play an important
role in Section 5 :

( (f1+/~)dn=Js-Jl.JII

(16)

We refer to the Appendix for the proof.•
Remark 2.4. Following Krenk (1983a.b). Krenk and Gunneskov (1985) and Reissner

(1985). the effeet of pretn'i.fl may be accounted for by assuming a warping function now
depending on 5 E [0. L] of the form I(~ I (S).'; ~(S». which satisfies the following differential
equation



Nunlinear geometrically-exact beam with she-.H and warping 377

(17)

where 20(S) gives the angle of pretwist. In what follows. we account for the effect of pretwist
by considering a general warping function/(X" X~, S).•

2.3. De/ormation gradient
We develop in this section a particularly convenient expression for the deformation

gradient F(X) = Dt/J,(X). the derivative of the deformation map t/J, in (7) with respect to
the spatial coordinates (XI' X~. S). First. in agreement with (3). the spatial and time rates
of change of A(S. t) are given by

cA(S. t) v cA(S. t) v

-(~S--- = cu(S. t)A(S. n. ~--,- = w(S. t)A(S. 0,
ct

( 18)

where ro(S. t)eso(3) and w(S, t)e.w(3) are skcw-symmetric tensor fields with axial vectors
cu(S. Oe [RJ and w(S, t)e [RJ. respectively. In what follows. we will use the customary symbols
(.), to denote the differentiation iJ/liS, and (:) for Nelt. It now follows from (7) that

( 19)

where (. )., denotes partial differentiation with respect to X,. (el: = 1.2). Since A = t, ® E,.
with the aid of (19), we may express the deformation gradient as

Introducing the notation

(21 )

we arrive at the following final expression for the deformation gradient

(22)

where!l =A f CU is the axial vector of the skew-symmetric tensor n:= A 'A',with components
given in the material basis {E,l" Expression (22) plays an important role in the developments
that follow.

Remark 2.5. The above derivation holds for an arbitrary, not necessarily straight, line
of centroids. To see this. suppose the line of centroids in the reference configuration is a
smooth eurve tPu: [a, h j -+ [g 3, with length L. The arc length is then given by

(23)

so that Se[O,Lj for ee[a,hj and L = S(h). Thus. without loss of generality, we may
parameterize the reference line of centroids by its arc length S, so that t/JuCS) == tPu(S . I (S».
As for the reference frame {E, }. we may choose the Frenet frame and set

E.1 := t/J,:(S). (24)

Expressions (20) and (21) remain valid with
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did

dS = II d~,,/d'; II d';·

•
3. MECH:\~ICAL POWER. REDUCED CONSTITUTIVE EQUAnONS

We first identify the appropriate stress resultants and stress couples and their conjugate
strain measures by deriving the expression for the internal power of the rod. This is
accomplished by reduction of the stress power of a 3-D continuum in a manner consistent
with the assumed kinematics.

3.1. Stress resultants and stress couples. Conjugate strains
Let P denote the first Piola-Kirchhoff stress tensor. Relative to the basis (EI :- we have

the expression

(25)

Since the base vector E J is norm.11 to a typical cross-section in the reference (undeformed)
configuration. T, = PE, is the stress vector. per unit of reference area n. acting on that
cross-section in the deformed contiguration.

Recall that in terms of the first Piola -Kirchhotf stress p. the stress power may be
expressed as

~l=l P:';dUdS
11< '0,1.1

(26)

where P: ,;:= tr [1"';11. Our objective is to derive an exact expression for P in terms of the
stress resultants and stress couples acting on a cross-section. To this end. we make usc of
(22) along with (I ~)1 to obtain

(.' = wF+A(t +1) x Ar(q,_q,J+Jp'Ed ® EJ +ljA(E, ® VI+JD. x EJ +f'Ed ®E J.

(27)

In deriving expression (27), we have made usc of the orthogonality conditions (14) along
with the result

(2~)

which follows at once from (6) and (7). Next. since wis a skew-symmetric tensor ,lOd
PF'/J.= a is the (symmetric) Cauchy stress tensor, where J = det 10', it follows that

P: wF = tr (PF' WI) = J tr [awl) .= O. (29)

Hence. by substituting (27) into expression (26) for the stress power IP and making usc of
(29). we arrive at the expression for the mechanical power for the rod model

IP.= r [N·t·+M·U+NrP+M,p')dS.
JO.l.1

where the stress resultants N, M. Nrand MI have the expressions:

(30)
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:\ := ATn. with n:=1T, dn.

l\1:=A Tm. with m:=L(4)-4>)xT,dn.

N,:= t J ·1 U:,T, +fT J x w+f'T J] dn.

M,:= E.1 • [A T1f T J dn] == t.1 ·1J T J dn.
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(3Ia)

(3Ib)

(3Ic)

(3Id)

Remark 3.1. The objects defined by expressions (31) above have a clear physical
interpretation.

(a) n = ",e, == N{t{ and m = m,e, == iH{t{ are the stress resullant and the stress couple
acting on a cross-section in the deformed configuration. These two objects are spatial
vectors expressed either in the fixed spatial basis {e,}. or in the cross-section basis ttl}'

(b) ~ = ATn and i\I = ATm are material vectors obtained by transforming the spatial
vectors nand m back to the reference configuration (a pul/-hack operation using the
orthogonal transformation A: IR' -+ IR'). Since E{ = Artf. we have the following coordinate
expressions. N = N{E{ and t\l = M{E{. from the expression of the mechanical power IP in
(30). it can he seen that the strain measures conjugate to Nand t\l arc f' and n. respectively.
For more detail on the strain measures and their usc in computation. we refer readers to
the following references: Dupuis «(l)(jl). Reissner (1l)7J). Whitman and DeSilva (llJ74)
(component form). Simo (llJX5) and Simo and Vu-Quoc (llJX6a) (geometric interpretation
and parametrization).

(c) N, and AI, arc the counterpart in the finite deformation case or the hi-.I'ltear and the
hi-mllll/err( in the linear theory of thin-walled heams. In fact. it is shown helow that the
relation hetween N, and .H, parallels that or the linear theory. From (30). the bi-shear N, is
conjugate to the warping amplitude 1'; the bi-moment /1,1, is conjug'lte to the spatial
derivative of 1" .•

Rell/ark 3.2. The mechanical power in (30) is expressed in the material description.
The counterpart of (30) in the .I'I'C/(ial description takes the form

(32)

v
where w is the spatial curvature vector defined in (18). Here. (.) is the uhjecti!'1! rate
measured by an observer fixed in the moving rrame {t,l· and 'I is the following spatial vector

(33)

It can be seen from (32) that 'I is the strain measure conjugate to the spati.t1 stress resultant
n. and w the curvature vector conjugate to the spatial stress couple m.•

3.2. C01l.l'(ifl/(in! equatio1l.l'. llYI'('rel(/.~tici(y

Confining our attention to the elastic c.lse and the pure mechanical theory. we postulate
the existence of a stored energy function depending on the configuration and its first
derivative; i.e. '" = 'Pes. 4>". A. 4>:•. A' .1'.1"). and proceed to enforce the i1lmria1lce require­
me1l(s u1lder superposed rigid ho(~l' mo(io1ls. Let (-+ 41+ .=c(t)+Q(t)4>. be a superposed
rigid motion where c(t)e!R' and Q(t)eSO(3). It follows that



380 J. C. SlW} and L. Vl-QlOC

4>; =QU)4>,,+c(t). 4>,:- = QU)4>,;

A' =::: Q(r)A. .\'. =::: QU).\'. (34)

whereas the fields r. n, p and p' remain unchanged: that is, r+ =::: r. n- = n. p. = p and
p" = p'. Material frame indifference requires that

t/J = '¥(S.Q4>,,+c.Q,\.Q4>,;.QA',p.p') == '¥(S, 4>". A. 4>,;. A',p,p'). (35)

for any c(t)elR}. and any QU)ESO(3). In particular: (i) by choosing Q(t) = 1 and
c(t) = -4> (for fixed SE{O. L]) it follows that '¥ cannot depend on 4>: (ii) by choosing
Q = AT (for fixed SE[O,Lj) it follows that A cunnot be an argument in 'P, and that the
stored energy function takes the form

t/J = 'P(S. r.n.p.p').

Standard arguments then yield the hyperclastic constitutive equations:

(36)

r'P r'P r'P
N = --~'I-:;' M =::;-0' N -.-

I' ('u 1- 1'1' •
(37)

A concrete exumple of a properly invariant strain energy function is a qu'ldratic function
in the strain measures (I', n.!" 1" :. obtained as a direct generalizution from the linear case
(see Section 5).

4. MOMENTUM llf\I.ANCE LAWS. GOVERNING EQUATIONS

In this section we derive the reduced expressions for the balance hlws governing the
evolution of the internal forces fl, rn, N, and M,. Our main result concerns the relation
connccting the bi-shear NI and the bi-moment MI'

4.1. /la/anct' /UlI' .!t1r tlte hi-shear anti hi-mOl1!e/1t

Ily making lise of the eX.lct three dimensional bal.lIlce of linear momentum equation
we derive the exact relation connecting NI and M,. Let 8(X) denote the hotly/om: per unit
n.:ference volume acting on the beam. and f/,,(X) the density in the reference configuration.
Since Div P = '1',,/, the local balance of linear momentum is expressed as

(38)

We use this relation to transform expression (3Ic) for the bi-shear Nl as follows. First, note
that

t,·il,T.dn=t
"
r[(fT.),.-/T•.•]dn

!l Ju

(39)

where we recall that v = !',E. is the normal unit vector to the I.lteral contour an of the
cross-section n. We denote by Ai, the following scalar resultant

Ai,,: t, '[f fT.!', dL+ { jp.. B dn].,'() In (40)

which in fact represents the distributed applied bi-moment on the beam. Employing the
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local equilibrium relation (38) and the definition (40) in the e~pression for the bi-shear in
(39). we obtain

= ....i,+ i(ft"TJhdn-l(ftJ)"TJdn-lfp,,4i·tJdn

=Ai,+M;-(ClJxtJ)·ifTJdn-lpJ4i·tJdn (41)

where we made use of the definition of the bi-moment Mf in (3Id). In view of (31c). eqn
(4\) implies that

M;-N,+"'!,= rp.J4i·t Jdn.Ju (42)

The right-hand side of the balance eqn (42) may be further reduced by assuming that p,,(S)
is independent of the transverse coordinates. Next. making usc of (II) and the relation
l, = w x t/. then: results

= /I" rf1 t I' [iit I + 2,iw x t 1+pw x t, + w x (w x t ,») dnJu

It remains to establish the equations of balance of linear and angular momenta in terms of
stress resultants.

4.2. Summary of I!lL' .tJOI'L'min.tJ et/ualimls
Let I(S. I) be the f('sullam lin('(lr nwmelllum. and let h(S. I) bc thc resultant angular

IIwmL'1/111I/1 relative to ,pAS. I). By dclinition. we have

(44)

It easily follows from (7) and orthogonality conditions (14) that I(S. t) = p"A4i,,(S. t).

Similarly. a more daborated calculation yields the following result for h(S.I):

h(S./) = p" (S)A(S. t)[J(S)+p2(S. t)3(S)Pt:,lW(S.I). (45)

where W ,= Al'w is the material angular velocity of the cross-section. J is the lime-imJependelll

inertia dyadic of the llllll'arped cross-section in the material description. and Pr. , is the
orthogonal projection parallel to E Io which are given by

J(S):=1X,X,I dn[c),/,I- E, ® E,,) == l,/IE, ® E,I +loE, ® E). Pr.,'= [1- E) ® Ed·

(46)

Note that [J +p 13Pr.J is the inertia dyadic in the matcrial description. associated with the
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warped cross·section. which becomes time-dependent due to the presence of the warping
intensity p(S. t). Result (46) can be also expressed in the spatial description.t Time
differentiation of (46) then yields

The complete system of equations governing the motion of the rod is summarized in Box
I below.

Box I. Governing equations for the rod model. Local form

,''I'(S. r. n. p. 1")
n '" A----~--.

v'l'(s. r.n.p.p')
,V, = •

,'I'

cA(S. tl •
:: wIS. t)A(S. O.

,1'I'(S. r.Rr.p')
M1 '" - -----" -,-- --­

'I'

Remark 4.1. The form of the equations of equilibrium (without the inertia terms)
involving nand m given in Box I arc well-known (e.g. Green and Laws, 1966), .md have
been used in rod models incorporating extensional .md shear deformations. as in Reissner
(11)73) or Antman (1974). These equations can be re-parametrized relative to the arc length
in the tlefu",,,,d configuration

s = .5(S):=r114J; II dS.

as in Whitman and DeSilva (1974). The stretch is then Ds!t'S = IItP,:II. Further. if shear
deformation is neglected, t J = tP;/II4J,:n and the equilibrium equations in Box I now para­
meterized in terms of the current arc length s reduce to

2n
~,- +ii = 0,
es

Dm
~-- +t.l x n+nl =O.
Us

(48)

where ii.= ii/II4J~1l and m.= m/ll4>~11 are the distributed applied force and couple per unit
deformed length. Equations (48) are in the form given in Ericksen and Truesdell (I958),t
By defining the material curvature vector K(s) such that

tSet j(S.I),=A(S.OJ(S)"r(S.I) and P,,fS.t) '" i\(S.t)PF.,(S).\r(S.t). and recall that w '" ,\W. so that
hIS. t) :: (j(S.I)+pl{S. 03P,,{S. 1)lw(S. I). Note that in the spatial description. j{S. t) :; J,~[J,~I-I.® 1,1 and
P,,CS.l) :: [I-I, ® 1,1 arc now time·t/ept'fldent.

: Sec equations (22.1) and (22.2). p_ 316. of Ericksen and Truesdell (1958).
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~ = IltfI,; II An = AK,
C.'S

383

(49)

where K(S(S)):= IltfI,:(S) Iln(S), in terms of the material stress resultant N and stress couple
M, (48) becom~

eN _ (~M _
--+KxN+N=O, -~-+KxM+E3xN+M=O,CS cs

(50)

where N:= A Tn, ~I := ATm. The equilibrium equations (50) are (in component form) those
given in Love (1944) for a thin rod without shear and warping deformation.t.

Remark 4.2. The momentum eqns (42)--(43) involving the bi-moment and bi-shear are
exact and were derived above in the context ofthejitlly nonlinear theory. Remarkably. the
static version of this equation is identical to that of the linear theory; see e.g. Vlasov (1961).
Reissner (1983b. 1984) derived the static version of (42) in the context of a second-order
geometrically nonlinear theory.•

Remark 4.3. For th~ dynamic case. Green and Laws (1966) considered the mass to be
distributed on the represent'ltive curve modeling the rod in their two-director theory; hence
there is no inertia term in the equation for the resultant couple. i.e. rotatory inertia is
neglected. Whitman and DeSilva (1969) derived a complete set of equations of motion for
their Cosserat curve that include the rotatory inertia. Antman and Liu (1979) also consider
both translational and rotatory inertia effects in their study of traveling waves in hyperclastic
rods. A complete analysis of the underlying Hamiltonian structure is given in Simo et al.
(19XX).•

5. A CLASS OF REDUCED EI.ASTIC CONSTITUTIVE EQUATIONS

We discuss below properly invariant constitutive equations in terms of stress result'lOts
and stress couples of the form (37). These constitutive relations arc extensions of results
obtained in the infinitesimal theory to the finite deformation range. Although these relations
could be postulated at the outset, the linal form can be motivated as follows.

5.1. E!e11/l'lIlary 11/otil'ation. Infinill'simal slrail/s

Let H be a rank-two materi.11 tensor defined as H .= ATF - l. From (22), we have

(51 )

We introduce the assumption of .I'11/aIlSlrail/.I'. although arbitrarily large displacements and
rotations. by consiJering a small parameter e > 0 and assuming that II H II = O(e). where
O(/:)!/: tends to a constant as e -- O. Accordingly, we set

(52)

where E.:= ~[F:F,- I) is the L'lgrangian strain tensor, and H'~ = ~[H + 1-1 rj denotes the
symmetric part of H. In adJition, let (1 be the Cauchy stress tensor. We assume that
II (111 = O(r.), so that the second Piola -Kirchhoff tensor S. becomes

(53)

In addition. because of (53) we have

t Equations (10) and (II) on pp. 387 -388 of Love (1944).
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ATP, ::: (det FJA TI1F; r ::: e~+O(e;). (54)

In what follows. we shall restrict our attention to the case ofsmall strains by considering
first order 0(<:) constitutive relations. No restriction. however. is placed on the displacement
field f!Ju(S.l) or on the rotation field A(S.I). Accordingly. we may postulate a linear isotropic
relation between S, and E£ with the same structure as in the linear theory; i.e. the so­
called Saint-Venant/Kirchhotf material. see Gurtin (1981) or Marsden and Hughes (1983).
Because of relations (5:!) and (53). this is equivalent. within order 0(e 2). to postulating a
relation

(55)

where:E ::: ~.IiE2 <8> Efl. H S
::: H:II Ej , <8> E/I' A. > 0 and G > 0 denotes the Lame's constants.

Although (55) are linearized relations. we emphasize that they are properly invariant
under superposed isometries. To proceed further. we note from (54) that. to first order.
ATT 3 = 1:13E,. Furthermore, as in elementary derivations of the linear theory, assume that

(56)

where G denotes the shear modulus and E the Young's modulus. Finally. by observing
from (51) that

(57)

,Ind setting r. 1= r· £2' we arrive <It the following constitutive relutions.
Sln'ss reslilralll N. Uy making use of the orlhogonality relutions (14). the condition

(2) I and the identity (16) ,. from definition (31 a) we obtuin the relution

N::: "tLT' dn::: L~IJEI dn::: [GAf.+GpLf. dn}':2+ EAf\E J •

::: [GAf. - Ge.IiS/lp]E2 +EAf )£). (58)

Slress couple M. Substitution of (57), conditions (14) and (5)" and definition (5h into
definition (31 b) of the material slress couples M relative to the centroid. results in the
following constitutive equation

(59)

where Jllv and J 0 arc the components of the inertia dyadic J as defined in (46). Notc that in
deriving (59) we have ncglected nonlinear tcrms in 1'2. Use of the identity (16h final1y yields

(60)

Hi-shear Nf and hi-moment Mf • First note that the second term in the expression for
the bi-shear Nf as given in (31c) is of the order 0(S2) and can be neglected consistently with
relation (54). Hence. making use of (14). (5) and identities (16) we obtain
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Nt = t l • if.T. dO =EJ ' i f.ATT. dO = EJ' i f.r.f.E f dO = 2Gi f.H1. dO

= G[r. if. dO+OJe./ii XJ/I dO+pi f; dOJ.
= G[e./is.r/l+(Jl-Jo)OJ+ (Js-Jl)p]·
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(61)

Finally. definition (3Id) for Mf and (54) along with (56). (57) and (14) yield the classical
relation

Mf = Ei jH1J dO = E'3p'.

The preceding constitutive relations can be written in matrix notation as

(62)

NI GA -GS~ f l

N~ GA- GS I r~

N., EA f J

At. EJ I1 EJI~ n ,
(63)

M~ EJ~! n!
.H, GJII G(,D -JII ) 0,

Nf SYM. G(Js-Jl) I'

M, r- I'

We note that the matrix of ma/t'rial d,wic moe/Illi is constant and symme/ric; hence, the
strain energy function (36) becomes a quadratic functional in the (material) strain variables
{r,n.p,p'}.

Remark 5.1. In the case of uniform (Saint-Venant) torsion. one has I' == {}Io and
constitutive eqn (59) reduces to the classical Saint-Venant solution M) = GJlO).t.

Remark 5.2. It is well known that direct integration of the local stress-strain relations
based on assumed beam kinematics overestimates the shear stiffness, which is often corrected
by introducing the so-called shear coefficient. Several procedures have been proposed to
estimate this coefficient: sec e.g. Cowper (1966). Similarly. the Saint-Venant torsional
const'lIlt Jl defined in (16) is often used in lieu of the polar moment of inertia J II (which is
the constant that arises in elementary beam theory without warping but including torsional
effects).

For thin-walled beams. Krenk and Gunneskov (1985) propose the usc of a symmetric
tensor of generalized shear-corrected areas A." as a means of improving the shear stre~ses

distribution. In the present context this procedure can be readily implemented by assuming
an appropriate stored energy function. For instance, according to Krenk and Gunneskov
(1985).

where r. arc modified shear strains. If we set r..= r.-e.f/SIII', for IX = 1.2, usc of the
general expressions (37) yields constitutive equations with essentially the same structure as
(63).•.

t Note that Whitman and DeSilva (1974) used this type of constitutive equation but with GJn for torsional
stiffness instead of GJ [see eqn (~.3) of this referenceJ.
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6. VARIATIONAL FORMULATION. LINEARIZATION

In this section we construct the weak form (virtual work expression) of the local field
equations summarized in Box I, and discuss the variational structure underlying this model.
Subsequently, we address the linearization of the weak form and derive the local form of
the linearized equations. These linearized equations playa crucial role in an iterative
solution procedure of the Newton type (method of tangents) performed onfunction spaces.
in linearized stability and bifurcation analyses (e.g. Dupuis. 1969; Antman and Kenney.
1981). and in the study of the small deformations superimposed on finite deformations
(Green et al., 1968).

6.1. Admissible mriations. ~Veak form of the equilihrium equations
The equilibrium equations in Box I. without the inertia force. can be rewritten in the

following compact form

18*(<1»r -1 == O. in [0. Lj. (65)

where r is the /lector of stress resultants, 1 is the applied resultant force, and r- lB*r is a
configuration-dependent differential operator defined as

1B*«(II)r:== {-m~;,:x"l
-IHI+NI 7. I

r:={Zr} . f'={~l
,HI ,. I I 7. I

(66)

To define the virtual work expression associated with (65) we introduce the space of
kinematically admissihle variations in the standard manner as follows.

IIdmiss;h/e l'ariatio1/.\'. Assume for simplicity pure displacement houndary conditions.
and let

V:={'1:=(u,O.q):[O.L]-+1R 1 xR1 xlR I"I.~".J. = (0.0,0):, (67)

Given a configuration (f) == (cP. A,p)eC. any clement" == (u.O,q)e V uniqudy defines curve
of conftgunltions r - (Il~ e C. which starts at (lIe C and is given by

(68)

Here, exp [rOjeSO(3) denotes the orthogonal matrix obtained by exponentiating the skew­

symmetric matrix rO, By definition. d[(I>~/dr]r_(] is called a l'ariation of l1> e C in the direction
"e V. By differentiating (6.4) with respect to r it follows that the tangent space ofl'ar;ations
at (f) == (cP". A.p). which is denoted by T,pe. is given by

T.~C:== {(u,OA,q) I (u.O.q)e V:' (69)

Clearly. these arc a one-to-one correspondence between ToJ>C and V. With a slight abuse of
notation, in what follows. an clement of V is often referred to simply as a l'{/riation.

By multiplying (65) by a variation" e V and integrating by parts, we obtain the
following virtual work expression; a function G: C x V -> IR given by

G(ct>.,,):== f 18(<1»", r dS - f ",1 dS == O. for all "e V,

where 18(<1» is the differential operator defined as

(70)
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g, +t/J; x 9}
q = (D, 9,q). V - 9(<I»q '- :

q hi
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(71 )

The vector of resultants r is a function of the configuration through the elastic relations
(37). We introduce the notation

so that constitutive eqns (37) and the corresponding elasticity tensors then take the following
compact from

R o'l'(S. E) r:= nR.
= 11E •

V~'(I(S. E)
C = DE~- e = ncn

T
• (73)

The quadratic constitutive relation considered in Section 5 corresponds to the case C =
Com/.

Remark 6.1. The constitutive eqns (73) could be phrased in weak form as follows. Let
XeS. R):= - 'I'(S. E) + R' E be the Legendre transformation of 'l'(S. E). Define

. r·· [ iJx(S. R) • ] d11(111• R ; (5R):= Jo JR' - -'"DR"- + 1'.(111) S. (74)

Then 11«11. R; DR) = 0 for arbitrary JR is the Hellinger-Reissner weak form of the consti­
tutive equations. This form plays a central role in recent finite element formulations of the
incompressible problem (Franca and Hughes. 1988) and plates and shells (Simo and Fox.
1989; Simo 1'1 al.• 1989).•

6.2. Unear;:al;un. Puletll;al uperarurs. Newton's melhod
First. we record the expression for the linearization of the strain measures E«II) at a

configuration <II in the direction a variation ~ E V. which is denoted by DE(cJ)·~. Given
~ E V. consider the curve of configurations <1>; defined as in (67). Using the chain rule. by
the directional derivative formula one has the result (Simo and Vu-Quoe, 1986c).

dl .DE«II)' ~ ,= d-- E(<II?) = n8(<1»~. for any ~ E V.
1'.0

(75)

where 8«11) is defined by (71). The linearization of the weak form G«[I,,,) at configuration
«(I E C in the direction of a variation ~ = (ii. '0. q) E V is a bilinear form on V. which is denoted
by DG(<II.,,)·~.and is given by

d I .DG(<1>.,,)· ~ =d- G(<1>;. ,,)•
• ,-0

(76)

v

where. as in (67). [d<1>;/d.]I,.o = (ii. '0 A, q). Making use of (75) and the chain rule. (76)
results in the following expression
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DG(<P.,,). ~ = i
L

18 (<P),,. ciB(<P)~ dS+ (L IL,,· b[l~ dS.Jo Jo (77)

Here. c is the spatial elasticity tensor defined in (73). b is the so-called initial stress matrix.
which in the present model is a (9 x 9) matrix. and IL is a matrix differential operator with
the following expressions

v ]

-n

~~4>:-(4)~.n)l] h~
(78)

Remark 6.2. Formally. if enough smoothness is assumed. the weak formulation as
given by (70) implies the local form (65) of the equilibrium equations. This is a standard
result in the calculus of variation which is obtained through integration by parts; see e.g.
Mikhlin (1970). Similarly. the localform of the /ineori:eci equilibrium equations is formally
obtained from (77) by integration by parts. In fact. from (77) there follows

DG(cl>.,,)· ~ = i
L

". {1B*(CI>)[cIB(C(l)';] + IL "'[blL~]} dSJ.

where IL '" is the <Idjoint operator of IL. In matrix notation. one has the expressions

(79)

d d
dS • .1 0 " .1 0,,, I - dS· 1 0" , 0J-\

IL .=
t~~~ .,

. IL '" 1= d . (80)
0,,\ 0,,, 1 0,,\ - ., .,

d.)'

0,.1 .,
0"1 'I. 1 0 1., °1 ••

0,.\ 7;( 9

The operator within brackets in (79) is referred to as the local {(Ingent operator at con­
tiguration <I>e C. We usc the notation

IK(<P) = 1B"'«I>)[clB«IJ)] + IL"'[blL]. (81)

•Remark 6.3. The second term in (77). or the term IL "'[bILl in (81). is referred to as the
geometric part of the tangent operator. Since b is .qenerally non-.I)'fmnetric, see (78). it
follows from (77) that DG«IJ.,,)· ~ '# DG«IJ.~)·", Equivalently. for arbitrary <Pe C. the
tangent operator IK«I» defined by (81) is generally non-self-adjoint. However, as shown in
Simo and Vu-Quoc (1986c), symmetry of the linearized weak form or. equiv<llcntly. self­
adjointness of the local tangent operator. is recovered at an eCll/ilihrilim conjigllration.
provided the loading is conservative. Away from equilibrium. a proper definition of the
Hessian also leads to a symmetric tangent operator (see Simo, 1990).•

Remark 6.4. The linearized problem plays a central role in the iterative solution of
nonlinear boundary value problems. The basic tool here is Kantorovich's extension of
Newton's method to nonlinear operators defined in Banach spaces of functions, e.g.
Vainbcrg (1964). In a numerical analysis context, the procedure is often referred to as the
incremental method. We refer to Bernadou et al. (1984) for a recent mathematical analysis
of the method within the framework of nonlinear elasticity. The formulation and application
of the method to three-dimensional geometrically exact rod models is considered in detail
in Simo and Vu-Quoc (1986c) in the context of the static problem. and in Simo and Vu­
Quoc (1988) in the context of the dynamic problem. The results in this section enable one
to extend this methodology to the situation in which torsion-warping is taken into account
with essentially no modification. Hence. further details are omitted.•
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Section A-A

Fig. 2. Right angle frame. Problem description.

218

23~

Fig. 3. Right angle frame. Perspective view of first revolution of snap-Ihrough motion.

800

-600

400

600

-400

"!!
i -200
«

I 200

Ol-------~+--c7'--------

_900L-_-'-_-L._---L__L..-_...L..-_-L._---L_---'

-200 -150 -100 -:)0 0 50 100 150 200

Lateral opel displacement

Fig. 4. Right angle frame. Applied moment versus lateral displacement of a(ICx.
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Fig. 5. Right anglc frame. Magnified portion of the applied moment versus apex lateral displacement
diagram. Comparison of formulations with warping (solid line) and without warping (dolled line).

6.3. Numerical example
As an illustration of the formulation presented in this paper and the variational setting

outlined above we consider the following numerical simulation obtained through a Galerkin
projection of the weak form (77). We use a finite element discretization in terms of bi­
quadratic isoparametric finite clements with two-point uniformly reduced numerical inte­
gration. and n:fer to Simo and Vu-Quoc (19S6b.c) for a detailed account of the numerical
procedure.

We consider a right angle frame as shown in Fig. 2. whose deformation is symmetric
with respect to the plane .1':. The apcx of the frame is constrained to remain in the plane
.1': at all tina:. The hinged ends can only slidc on the x-axis. and rotate about the :-axis.
Due to this symmetry. only half of thc frame is modeled. The valuc of Young's modulus is
E = 71240. and the value of the shear modulus is (i = 27191. The cross-section has the
following geometric properties: 1 11 = 1350. J zz = 0.54. JJ = 2.16 and::: = 40.5. A moment
with iru:reasing magnitude is applied at the hinged end of the frame. To trigger the out-of­
plane bifurcation. a very small perturbation load is also applied at the apex. When the
amplitude of the applied moment reaches its critical value. the frame buckles out-of­
plane. At this moment. we remove the perturbation load. and employ a combination of
displacement-control and arc-length method to tnlce the post-buckling response. The frame
undergoes revolutions about the x-axis as we keep applying the end moments; two revolu­
tions are performed in the present analysis. A perspective view of the lirst revolution is
shown in Fig. J. where the deformed shapes are given with no magnification. i.e. at the
same scale as that of the geometry of the structure. A plot of the magnitude of the applied
moment vcrsus the lataal displa<:emcnt of the apex is given in Fig. 4. It is fairly obvious
that for this type of cross-section. the cfrcct of warping is insignilkant as compared with
the formulation without warping in Simo and Vu-Quoc (1986c); Fig. 5 shows a zoomed-

1000

750

of------..:::...-~~:;-.~-----

-500

-750

50 100 150 200o
- 1000 '--_'--_..L-_-'-_-'-_-'-_-'-_-'-_...J

-200 -150 -100 -50

Lateral displacement of opex

Fig. 6. Right angle frame. Applied moment versus lateral displacement of ape:'t. Solution (in solid
line) for warping inertia constant::: ,= IO()O. The solution "'il!rolll Imrpi".'1 is shown hy the clolI"d

li"...
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in portion of Fig. 4 with the result without warping in dotted line. Further. we note that
the results remain essentially the same when warping at the hinged ends is constrained to
zero or not. In Figure 6. the effect of warping is clearly demonstrated for a cross-section
with a warping moment of inertia =: = 1000. but possessing the same other properties as
the previous cross-section (the dotted line is the same plot as in Fig. 4 reproduced for
comparison).

7. CLOSURE

We have presented a model of a finitely deformable beam accommodating shear and
warping distortions of the cross-section. The geometry of deformations is described exactly
through configurations that take values in IR J x SO(3) x IR; a nonlinear differentiable mani­
fold. The development of our model is based on basic concepts from three-dimensional
elasticity: the mechanical power of the beam is exactly reduced from the stress power of
the three-dimensional continuum. and provides an identification of the resultant forces and
their conjugate strain measures. The model incorporates Vlasov's notions of bi-moment
and bi-shear in a fully nonlinear geometrically exact context. In particular. the additional
balance law for the bi-moment is exact (within the kinematic hypothesis) and not restricted
to the usual case of second-order theories. Properly invariant reduced constitutive relations
are motivated and developed within the framework of hyperelasticity. The variational
formulation of the model is also discussed, including the linearization of the weak form
,lOd the structure of the local tangent operator, and is illustrated by means of a numerical
example.
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I\I'PENDIX. PROOF OF IDENTITIES (f61

First. since til" =lpp = O. we have

(AI)
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Use of Green's formula, boundary condition (Db and orthogonality conditions (I~) yields

which proves (15) ,. Ne~t, since e,uJ,u = O. use of Green's formula and boundary condition t 13): yields
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(A2)

(A3)

Using again Green's formula along with the fact that.f~u = 0 and definition (l5): of the torsion modulus. from
(A3) there follows

(M)

Identities (16),.• easily follow from (A2). (A~) and definition (IS), of the torsion modulus.•


